
Strongly Connected Components
An instructional graph algorithm

Graham Poulter

gpoulter@cs.uct.ac.za

Department of Mathematics and Applied Mathematics

University of Cape Town

4 August 2005

Presentation at SACO Final Training Camp for IOI 2006 – p.1/10



The Problem

A strongly connected component is a
maximal subgraph in which there is a path
from each vertex to any other vertex.

An algorithm to find the strongly connected
components of a directed graph G having n

vertices and m edges in O(n + m) time.

Images by Rashid bin Muhammad.

Presentation at SACO Final Training Camp for IOI 2006 – p.2/10



Algorithm Overview

Use DFS to list the vertices in order of their
DFS finishing times (achieved by adding the
vertex to the list when its recursive DFS “visit”
call returns, or simulating this with a stack).

Transpose the directed graph to G
T by

reversing the direction of each edge: every
a → b becomes b → a.

Call DFS “visit” on each (unvisited) vertex in
G

T , starting with the latest-finishing-time
vertex from the first DFS and working
backwards.

Presentation at SACO Final Training Camp for IOI 2006 – p.3/10



Gathering Results

First note that DFS on a directed graph
results in a forest of DFS trees, since not all
parts may be reachable from a given start
vertex.

In the second DFS, the outer loop should go
backwards in the list of vertices (that is, call
“visit(GT ,v)” where v is the unvisted vertex
with latest finishing time). The tree will only
cover vertices in a strongly connected
component.

Presentation at SACO Final Training Camp for IOI 2006 – p.4/10



DFS Finishing Times

The number on the left is the start time (when
“visit” was called) and the one on the right is the
finish time (when “visit” returned). Strong
components are grouped in clouds.

Presentation at SACO Final Training Camp for IOI 2006 – p.5/10



Transposed Graph

Note reversed edges. Black vertices are starting
points for “visit” in the second DFS (order:
b,c,g,h).

Presentation at SACO Final Training Camp for IOI 2006 – p.6/10



DAG of Strong Components

Each strong component can be mapped to a
vertex, and the graph of components is a
Directed Acyclic Graph (DAG).

Presentation at SACO Final Training Camp for IOI 2006 – p.7/10



Why it works

Construct the DFS forest (with discovery,
back and side edges), with later nodes and
trees placed to the right of earlier ones.
Hence, side edges will always point to the left.

Mark all nodes unvisited, and reverse the
edges, but leave the tree the same. The sides
edges now point to the right. At each
outer-loop call to visit, the “latest-finishing of
the unvisited nodes” will always be the root of
the rightmost tree, so there is no possibility of
the second DFS escaping its strong
component. Presentation at SACO Final Training Camp for IOI 2006 – p.8/10



DAGness of component graph

Suppose the component graph were not acyclic.
Then there would be a cycle involving two
components, and the vertices involved in the
cycle would be strongly connected. Such strong
spanning of multiple strong components
contradicts their componentness (each vertex is
a member of at most one component). Hence
the component graph must be acyclic.

Presentation at SACO Final Training Camp for IOI 2006 – p.9/10



References

Strong connectivity
“CPS 130: Fall 2001: Introduction to the Design and Analysis of Algorithms:
Lecture 16: Graph Algorithms”
Michael L. Littman (2001)

www.cs.duke.edu

Website of Rashid bin Muhammad

Presentation at SACO Final Training Camp for IOI 2006 – p.10/10

http://www.cs.duke.edu/education/courses/cps130/fall01/lectures/lect16.ps
http://www.personal.kent.edu/~{}rmuhamma/ Algorithms/MyAlgorithms/GraphAlgor/strongComponent.htm

	The Problem
	Algorithm Overview
	Gathering Results
	DFS Finishing Times
	Transposed Graph
	DAG of Strong Components
	Why it works
	DAGness of component graph
	References

